use std::collections::HashMap; use std::fs; use std::io::{Read, Write}; use std::path::Path; use std::fs::File; use image::GenericImageView; use csv::{Reader, ReaderBuilder, StringRecord}; #[path ="src/simdata.rs"] mod simdata; use crate::simdata::*; fn main() { linker_be_nice(); // make sure linkall.x is the last linker script (otherwise might cause problems with flip-link) println!("cargo:rustc-link-arg=-Tlinkall.x"); #[cfg(feature="simulation")] write_sim_data(); compile_assets(); } fn compile_assets() { let asset_path = Path::new("assets"); let mut image_output = File::create(Path::new("target/images.rs")).unwrap(); for image in fs::read_dir(asset_path).unwrap() { let fname = image.unwrap().file_name(); let fname_str = fname.to_str().unwrap(); if fname_str.ends_with(".pbm") { let img = image::open(asset_path.join(fname_str)).unwrap(); let img_name = fname_str.rsplit_once('.').unwrap().0.to_uppercase().replace("-", "_"); let mut converted_row = Vec::new(); let mut byte_buf = String::new(); image_output.write_all(format!("pub const {img_name}: ImageRaw = ImageRaw::new(&[\n").as_bytes()).unwrap(); for (x, _, pixel) in img.pixels() { if pixel.0 == [0, 0, 0, 255] { byte_buf.push('1'); } else { byte_buf.push('0'); } if byte_buf.len() == 8 { converted_row.push(byte_buf); byte_buf = String::new(); } if x == img.width() - 1 { if !byte_buf.is_empty() { byte_buf.push('_'); for _ in 0..(9 - byte_buf.len()) { byte_buf.push('0'); } converted_row.push(byte_buf); byte_buf = String::new(); } image_output.write_all(b" ").unwrap(); for pix in converted_row.iter() { image_output.write_all(format!("0b{pix}, ").as_bytes()).unwrap(); } image_output.write_all(b"\n").unwrap(); converted_row = Vec::new(); } } image_output.write_all(format!("], {});\n", img.width()).as_bytes()).unwrap(); println!("cargo::rerun-if-changed={fname_str}"); } } } trait FromRecord { fn from_record(records: &[StringRecord], headers: &[HashMap]) -> Self; } impl FromRecord for AnnotationReading { fn from_record(records: &[StringRecord], headers: &[HashMap]) -> Self { let text = records[0].get(headers[0]["text"]).unwrap(); let mut data = AnnotationReading::default(); data.buf[..text.len()].copy_from_slice(text.as_bytes()); data } } impl FromRecord for GPSReading { fn from_record(records: &[StringRecord], headers: &[HashMap]) -> Self { Self { lat: records[0].get(headers[0]["latitude"]).unwrap().parse().unwrap(), lon: records[0].get(headers[0]["longitude"]).unwrap().parse().unwrap() } } } impl FromRecord for IMUReading { fn from_record(records: &[StringRecord], headers: &[HashMap]) -> Self { Self { accel_x: records[0].get(headers[0]["x"]).unwrap().parse().unwrap(), accel_y: records[0].get(headers[0]["y"]).unwrap().parse().unwrap(), accel_z: records[0].get(headers[0]["z"]).unwrap().parse().unwrap(), gyro_x: records[1].get(headers[1]["x"]).unwrap().parse().unwrap(), gyro_y: records[1].get(headers[1]["y"]).unwrap().parse().unwrap(), gyro_z: records[1].get(headers[1]["z"]).unwrap().parse().unwrap(), } } } fn generate_sim_data(srcs: &[&Path], dest: &Path, skip_rate: usize) { for src in srcs { println!("cargo::rerun-if-changed={}", src.to_str().unwrap()); } if dest.exists() { let last_modified = dest.metadata().unwrap().modified().unwrap(); let any_src_newer = srcs.iter().map(|src| { src.metadata().unwrap().modified().unwrap() }).any(|stamp| { stamp > last_modified }); if !any_src_newer { return; } } // Calculate the total record cound based on how many records are in the first file let fd = File::open(srcs[0]).unwrap(); let mut reader = ReaderBuilder::new().has_headers(true).from_reader(fd); let header = EventStreamHeader { count: reader.records().count() }; let mut output = File::create(dest).unwrap(); header.write_rmp(&mut output).unwrap(); let mut readers: Vec<_> = srcs.iter().map(|src| { let fd = File::open(src).unwrap(); ReaderBuilder::new().has_headers(true).from_reader(fd) }).collect(); let mut last_stamp = 0.0; let headers: Vec> = readers.iter_mut().map(|reader| { reader.headers().unwrap().iter().enumerate().map(|x| { (x.1.to_owned(), x.0) } ).collect() }).collect(); let mut all_records: Vec<_> = readers.iter_mut().map(|reader| { reader.records() }).collect(); let mut skip_count = 0; loop { let mut next: Vec<_> = all_records.iter_mut().map(|reader| { reader.next() }).collect(); // If any of the data files rusn out, simply quit. This does not verify that the written number of records is correct, however if next.iter().any(|x| { x.is_none() }) { break; } let next: Vec<_> = next.iter_mut().map(|x| { x.take().unwrap().unwrap() }).collect(); let data = Event::from_record(next.as_slice(), headers.as_slice()); //eprintln!("next={next:?} headers={headers:?}"); let this_timecode: f64 = next[0].get(headers[0]["seconds_elapsed"]).unwrap().parse().unwrap(); let time_delta = this_timecode - last_stamp; let record = StreamEvent { timecode: time_delta, data }; if skip_count == 0 { last_stamp = this_timecode; record.write_rmp(&mut output).unwrap(); skip_count = skip_rate; } else { skip_count -= 1; } } } fn write_sim_data() { let test_data_path = Path::new("test-data"); let output_path = Path::new("target"); let gps_input = test_data_path.join("LocationGps.csv"); let gyro_input = test_data_path.join("GyroscopeUncalibrated.csv"); let accel_input = test_data_path.join("AccelerometerUncalibrated.csv"); let annotation_input = test_data_path.join("Annotation.csv"); let gps_output = output_path.join("gps_test_data.msgpack"); let motion_output = output_path.join("motion_test_data.msgpack"); let annotation_output = output_path.join("annotations.msgpack"); let unified_output = output_path.join("unified.msgpack"); generate_sim_data::(&[&annotation_input], &annotation_output, 0); generate_sim_data::(&[&gps_input], &gps_output, 0); generate_sim_data::(&[&accel_input, &gyro_input], &motion_output, 2); let mut unified_fd = File::create(unified_output.clone()).unwrap(); let segments = [(StreamType::IMU, motion_output), (StreamType::GPS, gps_output), (StreamType::Annotations, annotation_output)]; // Write out the stream index header rmp::encode::write_array_len(&mut unified_fd, segments.len() as u32).unwrap(); // Then the streams for (stream_type, stream_path) in segments { let mut fd = File::open(stream_path).unwrap(); rmp::encode::write_ext_meta(&mut unified_fd, fd.metadata().unwrap().len() as u32, stream_type.into()).unwrap(); let mut buf = Vec::new(); fd.read_to_end(&mut buf).unwrap(); unified_fd.write_all(buf.as_slice()).unwrap(); } let mut partitions = Reader::from_reader(File::open("partitions.csv").unwrap()); let mut data_offset = 0x9000; // Assumes default bootloader size (0x7000) plus partition table (0x2000) let mut data_size = 0; let mut found_sim_partition = false; for p_desc in partitions.records().flatten() { let offset = parse_partition_number(p_desc.get(3).unwrap().trim()); data_size = parse_partition_number(p_desc.get(4).unwrap().trim()).unwrap(); data_offset = offset.unwrap_or(data_offset); if let Some("sim") = p_desc.get(0) { found_sim_partition = true; break; } else { data_offset += data_size; } } if !found_sim_partition { panic!("Could not find a 'sim' partition in partitions.csv!"); } if unified_fd.metadata().unwrap().len() as usize >= data_size { // FIXME: Need to implement automatic data resampling panic!("Simulation data is too big! Cannot fit {:#x} bytes into a partition with a size of {data_size:#x} bytes.", unified_fd.metadata().unwrap().len()); } let mut data_flash_script = File::create(output_path.join("flash-sim-data.sh")).unwrap(); data_flash_script.write_all(format!("espflash write-bin {data_offset:#x?} {}", unified_output.to_str().unwrap()).as_bytes()).unwrap(); } fn parse_partition_number(n: &str) -> Option { if n.is_empty() { None } else if let Some(hex_offset) = n.strip_prefix("0x") { Some(usize::from_str_radix(hex_offset, 16).unwrap()) } else if let Some(mb_offset) = n.strip_suffix("M") { Some(mb_offset.parse::().unwrap() * 1024 * 1024) } else if let Some(kb_offset) = n.strip_suffix("K") { Some(kb_offset.parse::().unwrap() * 1024) } else { Some(n.parse().unwrap()) } } fn linker_be_nice() { let args: Vec = std::env::args().collect(); if args.len() > 1 { let kind = &args[1]; let what = &args[2]; match kind.as_str() { "undefined-symbol" => match what.as_str() { "_defmt_timestamp" => { eprintln!(); eprintln!("💡 `defmt` not found - make sure `defmt.x` is added as a linker script and you have included `use defmt_rtt as _;`"); eprintln!(); } "_stack_start" => { eprintln!(); eprintln!("💡 Is the linker script `linkall.x` missing?"); eprintln!(); } "esp_wifi_preempt_enable" | "esp_wifi_preempt_yield_task" | "esp_wifi_preempt_task_create" => { eprintln!(); eprintln!("💡 `esp-wifi` has no scheduler enabled. Make sure you have the `builtin-scheduler` feature enabled, or that you provide an external scheduler."); eprintln!(); } "embedded_test_linker_file_not_added_to_rustflags" => { eprintln!(); eprintln!("💡 `embedded-test` not found - make sure `embedded-test.x` is added as a linker script for tests"); eprintln!(); } _ => (), }, // we don't have anything helpful for "missing-lib" yet _ => { std::process::exit(1); } } std::process::exit(0); } println!( "cargo:rustc-link-arg=-Wl,--error-handling-script={}", std::env::current_exe().unwrap().display() ); }