src: implement ego tracking models, and port shaders from renderbug into here
This commit is contained in:
180
src/tasks/mpu.rs
Normal file
180
src/tasks/mpu.rs
Normal file
@@ -0,0 +1,180 @@
|
||||
use core::cell::RefCell;
|
||||
|
||||
use embassy_embedded_hal::shared_bus::asynch::i2c::I2cDevice;
|
||||
use embassy_sync::{blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex}, channel::{DynamicSender, Sender}};
|
||||
use embassy_time::{Delay, Timer};
|
||||
use esp_hal::{i2c::master::I2c, Async};
|
||||
use log::{info, warn};
|
||||
use mpu6050_dmp::{address::Address, calibration::CalibrationParameters, error_async::Error, sensor_async::Mpu6050};
|
||||
use nalgebra::Vector3;
|
||||
use core::f32::consts::PI;
|
||||
use nalgebra::ComplexField;
|
||||
|
||||
use crate::{backoff::Backoff, ego::{alignment::SensorAlignment, tilt::TiltEstimator}, events::{Measurement, Notification}};
|
||||
|
||||
const G: f32 = 9.80665;
|
||||
const SENS_2G: f32 = 16384.0;
|
||||
const DEG2RAD: f32 = PI / 180.0;
|
||||
|
||||
/// Convert raw accel (i16) to m/s^2
|
||||
fn accel_raw_to_ms2(raw: i16) -> f32 {
|
||||
(raw as f32 / SENS_2G) * G
|
||||
}
|
||||
|
||||
/// Convert raw gyro (i16) to rad/s. For MPU6050 typical gyro scale at ±2000 deg/s -> 16.4 LSB/deg/s
|
||||
/// Adjust if you configured different full-scale range.
|
||||
fn gyro_raw_to_rads(raw: i16) -> f32 {
|
||||
// lsb_per_dps e.g. 16.4 for ±2000 dps
|
||||
(raw as f32 / 16.4) * (DEG2RAD)
|
||||
}
|
||||
|
||||
/// Rotate body accel into ENU and remove gravity; returns (east, north, up) linear accel in m/s^2
|
||||
pub fn accel_body_to_enu_lin(body_acc: (f32,f32,f32), roll: f32, pitch: f32, yaw: f32) -> (f32,f32,f32) {
|
||||
let (ax, ay, az) = body_acc;
|
||||
|
||||
let (sr, cr) = roll.sin_cos();
|
||||
let (sp, cp) = pitch.sin_cos();
|
||||
let (sy, cy) = yaw.sin_cos();
|
||||
|
||||
// Build R = Rz(yaw) * Ry(pitch) * Rx(roll)
|
||||
// multiply R * a_body
|
||||
let r11 = cy*cp;
|
||||
let r12 = cy*sp*sr - sy*cr;
|
||||
let r13 = cy*sp*cr + sy*sr;
|
||||
|
||||
let r21 = sy*cp;
|
||||
let r22 = sy*sp*sr + cy*cr;
|
||||
let r23 = sy*sp*cr - cy*sr;
|
||||
|
||||
let r31 = -sp;
|
||||
let r32 = cp*sr;
|
||||
let r33 = cp*cr;
|
||||
|
||||
// a_nav = R * a_body
|
||||
let ax_nav = r11*ax + r12*ay + r13*az; // east
|
||||
let ay_nav = r21*ax + r22*ay + r23*az; // north
|
||||
let az_nav = r31*ax + r32*ay + r33*az; // up
|
||||
|
||||
// remove gravity (nav frame gravity points down in NED; in our ENU 'up' axis positive up)
|
||||
// If accel measured gravity as +9.8 on sensor when static and z down convention used above,
|
||||
// then az_nav will include +g in 'up' direction; subtract G.
|
||||
let ax_lin = ax_nav;
|
||||
let ay_lin = ay_nav;
|
||||
let az_lin = az_nav - G; // linear acceleration in up axis
|
||||
|
||||
(ax_lin, ay_lin, az_lin)
|
||||
}
|
||||
|
||||
#[embassy_executor::task]
|
||||
pub async fn mpu_task(events: Sender<'static, NoopRawMutex, Measurement, 4>, sink: DynamicSender<'static, Notification>, bus: I2cDevice<'static, CriticalSectionRawMutex, I2c<'static, Async>>) {
|
||||
let backoff = Backoff::from_millis(5);
|
||||
let busref = RefCell::new(Some(bus));
|
||||
|
||||
backoff.forever().attempt::<_, (), ()>(async || {
|
||||
let mut sensor = backoff.forever().attempt(async || {
|
||||
info!("Initializing MPU");
|
||||
match Mpu6050::new(busref.replace(None).unwrap(), Address::default()).await.map_err(|e| { e.i2c }) {
|
||||
Err(i2c) => {
|
||||
busref.replace(Some(i2c));
|
||||
Err(())
|
||||
},
|
||||
Ok(mut sensor) => {
|
||||
match backoff.attempt(async || { mpu_init(&mut sensor).await }).await {
|
||||
Err(_) => {
|
||||
busref.replace(Some(sensor.release()));
|
||||
Err(())
|
||||
},
|
||||
Ok(_) => Ok(sensor)
|
||||
}
|
||||
}
|
||||
}
|
||||
}).await?;
|
||||
|
||||
let sensor_ref = &mut sensor;
|
||||
|
||||
let alignment = {
|
||||
info!("Locating earth...");
|
||||
let mut accel_samples = [Vector3::default(); 100];
|
||||
let mut gyro_samples = [Vector3::default(); 100];
|
||||
for (idx, (accel_sample, gyro_sample)) in accel_samples.iter_mut().zip(gyro_samples.iter_mut()).enumerate() {
|
||||
let (accel, gyro) = backoff.attempt(async || { sensor_ref.motion6().await }).await.unwrap();
|
||||
*accel_sample = Vector3::new(accel_raw_to_ms2(accel.x()), accel_raw_to_ms2(accel.y()), accel_raw_to_ms2(accel.z()));
|
||||
*gyro_sample = Vector3::new(gyro_raw_to_rads(gyro.x()), gyro_raw_to_rads(gyro.y()), gyro_raw_to_rads(gyro.z()));
|
||||
info!("{idx}/200 {accel_sample:?} {gyro_sample:?}");
|
||||
Timer::after_millis(5).await;
|
||||
}
|
||||
|
||||
SensorAlignment::new(accel_samples.as_slice(), gyro_samples.as_slice())
|
||||
};
|
||||
|
||||
info!("MPU is ready! earth={alignment:?}");
|
||||
sink.send(Notification::CalibrationComplete).await;
|
||||
let mut tilt = TiltEstimator::new(0.3);
|
||||
//TODO: Need to read in a constant buffer of accelerometer measurements, which we can then use to determine where "forward" points in the body frame when converting from the sensor frame.
|
||||
// From there, we can rotate the body frame into the world frame using gps headings to generate a compass north
|
||||
fn lowpass(prev: f32, current: f32, alpha: f32) -> f32 {
|
||||
prev + alpha * (current - prev) // alpha in (0,1), small alpha = heavy smoothing
|
||||
}
|
||||
let mut prev_accel = Vector3::default();
|
||||
loop {
|
||||
match backoff.attempt(async || { sensor_ref.motion6().await }).await {
|
||||
Ok((accel_data, gyro_data)) => {
|
||||
|
||||
// Apply the initial alignment correction to put it into the body frame where X is forward
|
||||
let adjusted = alignment.apply(&Vector3::new(
|
||||
accel_raw_to_ms2(accel_data.x()),
|
||||
accel_raw_to_ms2(accel_data.y()),
|
||||
accel_raw_to_ms2(accel_data.z())
|
||||
));
|
||||
let adjusted_gyro = alignment.apply_gyro(&Vector3::new(
|
||||
gyro_raw_to_rads(gyro_data.x()),
|
||||
gyro_raw_to_rads(gyro_data.y()),
|
||||
gyro_raw_to_rads(gyro_data.z())
|
||||
));
|
||||
|
||||
let filtered = Vector3::new(
|
||||
lowpass(prev_accel.x, adjusted.x, 0.3),
|
||||
lowpass(prev_accel.y, adjusted.y, 0.3),
|
||||
lowpass(prev_accel.z, adjusted.z, 0.3),
|
||||
);
|
||||
prev_accel = adjusted;
|
||||
|
||||
// Apply current rotation and accel values to rotate our values back into the ENU frame
|
||||
tilt.update(0.01, (filtered.x, filtered.y, filtered.z), (adjusted_gyro.x, adjusted_gyro.y, adjusted_gyro.z));
|
||||
let (roll, pitch, yaw) = tilt.angles();
|
||||
let (ax_e, ay_n, _az_up) = accel_body_to_enu_lin((filtered.x,filtered.y,filtered.z), roll, pitch, yaw);
|
||||
|
||||
let measured = Vector3::new(ax_e, ay_n, adjusted_gyro.z);
|
||||
events.send(
|
||||
Measurement::IMU(
|
||||
measured
|
||||
)
|
||||
).await;
|
||||
Timer::after_millis(10).await;
|
||||
},
|
||||
Err(e) => {
|
||||
warn!("Failed to read MPU motion data! {e:?}");
|
||||
busref.replace(Some(sensor.release()));
|
||||
return Err(());
|
||||
}
|
||||
};
|
||||
}
|
||||
}).await.ok();
|
||||
}
|
||||
|
||||
async fn mpu_init(sensor: &mut Mpu6050<I2cDevice<'static, CriticalSectionRawMutex, I2c<'static, Async>>>) -> Result<(), Error<I2cDevice<'static, CriticalSectionRawMutex, I2c<'static, Async>>>> {
|
||||
let mut delay = Delay;
|
||||
let backoff = Backoff::from_millis(10);
|
||||
info!("Initializing MPU");
|
||||
backoff.attempt(async || { sensor.initialize_dmp(&mut delay).await }).await?;
|
||||
backoff.attempt(async || { sensor.set_digital_lowpass_filter(mpu6050_dmp::config::DigitalLowPassFilter::Filter3).await }).await?;
|
||||
info!("Calibrating MPU");
|
||||
backoff.attempt(async || {
|
||||
// TODO: Store calibration data with set_accel_calibration, set_gyro_calibration
|
||||
sensor.calibrate(&mut delay, &CalibrationParameters::new(
|
||||
mpu6050_dmp::accel::AccelFullScale::G2,
|
||||
mpu6050_dmp::gyro::GyroFullScale::Deg2000,
|
||||
mpu6050_dmp::calibration::ReferenceGravity::Zero
|
||||
)).await.map(|_| { Ok(()) })
|
||||
}).await?
|
||||
}
|
||||
Reference in New Issue
Block a user