This commit is contained in:
2025-09-13 17:55:22 +02:00
commit 0315b4a559
8 changed files with 2125 additions and 0 deletions

261
src/bin/main.rs Normal file
View File

@@ -0,0 +1,261 @@
#![no_std]
#![no_main]
#![deny(
clippy::mem_forget,
reason = "mem::forget is generally not safe to do with esp_hal types, especially those \
holding buffers for the duration of a data transfer."
)]
use alloc::string::String;
use embassy_embedded_hal::shared_bus::asynch::i2c::I2cDevice;
use embassy_executor::Spawner;
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
use embassy_sync::mutex::Mutex;
use embassy_time::{Duration, Instant, Timer};
use embedded_hal_async::i2c::I2c as _;
use esp_backtrace as _;
use embassy_time::Delay;
use esp_hal::i2c::master::{Config, I2c};
use esp_hal::{Async, Blocking};
use esp_hal::clock::CpuClock;
use esp_hal::rmt::{ChannelCreator, Rmt};
use esp_hal::time::Rate;
use esp_hal::timer::systimer::SystemTimer;
use esp_hal::timer::timg::TimerGroup;
use esp_hal_smartled::{smart_led_buffer, SmartLedsAdapter};
use esp_hal::peripherals::GPIO5;
use figments::liber8tion::trig::sin8;
use figments::prelude::*;
use log::{info, warn};
use mpu6050_dmp::address::Address;
use mpu6050_dmp::calibration::CalibrationParameters;
use mpu6050_dmp::gyro;
use mpu6050_dmp::sensor_async::Mpu6050;
use nmea::{Nmea, SentenceType};
use renderbug_embassy::{as_milliwatts, brightness_for_mw};
use smart_leds::{
brightness,
SmartLedsWrite,
};
use static_cell::StaticCell;
extern crate alloc;
// This creates a default app-descriptor required by the esp-idf bootloader.
// For more information see: <https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/app_image_format.html#application-description>
esp_bootloader_esp_idf::esp_app_desc!();
static I2C_BUS: StaticCell<Mutex<NoopRawMutex, I2c<'static, Async>>> = StaticCell::new();
#[esp_hal_embassy::main]
async fn main(spawner: Spawner) {
// generator version: 0.5.0
esp_println::logger::init_logger_from_env();
let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
let peripherals = esp_hal::init(config);
esp_alloc::heap_allocator!(size: 64 * 1024);
let timer0 = SystemTimer::new(peripherals.SYSTIMER);
esp_hal_embassy::init(timer0.alarm0);
info!("Embassy initialized!");
let rng = esp_hal::rng::Rng::new(peripherals.RNG);
let timer1 = TimerGroup::new(peripherals.TIMG0);
let wifi_init =
esp_wifi::init(timer1.timer0, rng).expect("Failed to initialize WIFI/BLE controller");
let (mut _wifi_controller, _interfaces) = esp_wifi::wifi::new(&wifi_init, peripherals.WIFI)
.expect("Failed to initialize WIFI controller");
let frequency: Rate = Rate::from_mhz(80);
let rmt: Rmt<'_, esp_hal::Blocking> = Rmt::new(peripherals.RMT, frequency)
.expect("Failed to initialize RMT");
let rmt_channel = rmt.channel0;
spawner.spawn(render(rmt_channel, peripherals.GPIO5)).unwrap();
//static I2C_BUS: StaticCell<Mutex<NoopRawMutex, I2c<'static, Async>>> = StaticCell::new();
let i2c = I2c::new(peripherals.I2C1, Config::default()).unwrap().with_scl(peripherals.GPIO36).with_sda(peripherals.GPIO33).into_async();
let i2c_bus = I2C_BUS.init(Mutex::new(i2c));
//spawner.spawn(i2c_reader(i2c_bus)).unwrap();
spawner.spawn(gps_task(I2cDevice::new(i2c_bus))).unwrap();
//spawner.spawn(mpu_task(I2cDevice::new(i2c_bus))).unwrap();
// for inspiration have a look at the examples at https://github.com/esp-rs/esp-hal/tree/esp-hal-v1.0.0-rc.0/examples/src/bin
}
#[embassy_executor::task]
async fn mpu_task(bus: I2cDevice<'static, NoopRawMutex, I2c<'static, Async>>) {
info!("Initializing MPU");
let mut sensor = Mpu6050::new(bus, Address::default()).await.unwrap();
let mut delay = Delay;
sensor.initialize_dmp(&mut delay).await.unwrap();
sensor.calibrate(&mut delay, &CalibrationParameters::new(
mpu6050_dmp::accel::AccelFullScale::G2,
mpu6050_dmp::gyro::GyroFullScale::Deg2000,
mpu6050_dmp::calibration::ReferenceGravity::ZN
)).await.unwrap();
sensor.set_sample_rate_divider(255).await.unwrap();
info!("MPU is ready!");
loop {
let (accel_data, gyro_data) = sensor.motion6().await.unwrap();
info!("Accel x={} y={} z={}", accel_data.x() as i32, accel_data.y() as i32, accel_data.z() as i32);
info!("Gyro x={} y={} z={}", gyro_data.x() as i32, gyro_data.y() as i32, gyro_data.z() as i32);
Timer::after_millis(50).await;
}
}
//use embedded_hal_async::i2c::I2c;
#[embassy_executor::task]
async fn gps_task(mut i2c_bus: I2cDevice<'static, NoopRawMutex, I2c<'static, Async>>) {
info!("Initializing GPS");
//let bytes = "$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n";
//let bytes = "$PMTK314,1,1,1,1,1,5,1,1,1,1,1,1,0,1,1,1,1*2C\r\n";
// Enable a bunch of data? idk
let bytes = "$PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0*28\r\n";
i2c_bus.write(0x10, bytes.as_bytes()).await.unwrap();
// 1hz updates
let bytes = "$PMTK220,1000*1F\r\n";
i2c_bus.write(0x10, bytes.as_bytes()).await.unwrap();
// 1hz position fix
let bytes = "$PMTK300,1000,0,0,0,0*1C\r\n";
i2c_bus.write(0x10, bytes.as_bytes()).await.unwrap();
// Antenna updates
let bytes = "$PGCMD,33,1*6C\r\n";
i2c_bus.write(0x10, bytes.as_bytes()).await.unwrap();
let mut strbuf = String::new();
let mut parser = Nmea::default();
let mut parsing = false;
info!("GPS is ready!");
loop {
let mut buf = [0; 1];
i2c_bus.read(0x10, &mut buf).await.unwrap();
if (buf[0] as char == '\n' || buf[0] as char == '\r') && !strbuf.is_empty() {
if let Ok(result) = parser.parse(&strbuf) {
log::info!("nmea={:?} raw={:?}", result, strbuf);
log::info!("speed={:?} altitude={:?} lat={:?} lng={:?} fix={:?} nmea={:?}", parser.speed_over_ground, parser.altitude, parser.latitude, parser.longitude, parser.fix_type, parser);
} else {
log::warn!("Unhandled NMEA {:?}", strbuf);
}
strbuf = String::new();
parsing = false;
// Update frequency is 1hz, so we should never get an update faster than once per second
Timer::after_secs(1).await;
} else if strbuf.is_empty() && (buf[0] as char == '$' || buf[0] as char == '!') {
parsing = true;
strbuf.push(buf[0] as char);
} else if parsing {
strbuf.push(buf[0] as char);
} else {
// If there is no data ready for some reason, wait 500ms, which should place us at least somewhere after the next data frame is ready to read.
Timer::after_millis(500).await;
}
}
}
#[embassy_executor::task]
async fn i2c_reader(mut i2c_bus: I2c<'static, Async>) {
info!("Starting i2c bus");
// Enable status lines
let bytes = "$PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*28";
i2c_bus.write_async(0x10, bytes.as_bytes()).await.unwrap();
// 1hz updates
let bytes = "$PMTK220,1000*1F";
i2c_bus.write_async(0x10, bytes.as_bytes()).await.unwrap();
// Antenna updates
let bytes = "$PGCMD,33,1*6C";
i2c_bus.write_async(0x10, bytes.as_bytes()).await.unwrap();
let mut strbuf = String::new();
let mut parser = Nmea::default();
let mut parsing = false;
loop {
let mut buf = [0; 1];
i2c_bus.read_async(0x10, &mut buf).await.unwrap();
if (buf[0] as char == '\n' || buf[0] as char == '\r') && !strbuf.is_empty() {
//log::info!("buf={:?}", strbuf);
if let Ok(result) = parser.parse(&strbuf) {
log::info!("nmea={:?}", result);
log::info!("speed={:?} altitude={:?} lat={:?} lng={:?} fix={:?} nmea={:?}", parser.speed_over_ground, parser.altitude, parser.latitude, parser.longitude, parser.fix_type, parser);
} else {
log::warn!("Unhandled NMEA {:?}", strbuf);
}
strbuf = String::new();
parsing = false;
} else if strbuf.is_empty() && (buf[0] as char == '$' || buf[0] as char == '!') {
parsing = true;
strbuf.push(buf[0] as char);
} else if parsing {
strbuf.push(buf[0] as char);
}
}
}
#[embassy_executor::task]
async fn render(rmt_channel: ChannelCreator<Blocking, 0>, gpio: GPIO5<'static>) {
let rmt_buffer = smart_led_buffer!(255);
let mut target = SmartLedsAdapter::new(rmt_channel, gpio, rmt_buffer);
// Change this number to use a different number of LEDs
let mut pixbuf = [Default::default(); 255];
// Change this to adjust the power available; the USB spec says 500ma is the standard limit, but sometimes you can draw more from a power brick
const POWER_MA : u32 = 500;
// You probably don't need to change these values, unless your LED strip is somehow not 5 volts
const POWER_VOLTS : u32 = 5;
const MAX_POWER_MW : u32 = POWER_VOLTS * POWER_MA;
// This value is used as the 'seed' for rendering each frame, allowing us to do things like run the animation backwards, frames for double FPS, or even use system uptime for more human-paced animations
let mut frame = 0;
info!("Rendering started!");
loop {
let start = Instant::now();
// Clear the pixbuf to black
pixbuf.blank();
// Render the frame to the pixbuf, while also calculating the power consumption as we go
let mut total_power = 0;
for (coords, pix) in pixbuf.sample(&Rectangle::everything()) {
*pix = Rgb::new(sin8(coords.x.wrapping_mul(3).wrapping_add(coords.y.wrapping_mul(3)).wrapping_add(frame)), 0, 0);
total_power += as_milliwatts(pix);
}
// Scale the total brightness down so we don't immediately trigger a brownout
let scaled_brightness = brightness_for_mw(total_power, 255, MAX_POWER_MW);
// Finally, write out the rendered frame
target.write(brightness(pixbuf.iter().cloned(), scaled_brightness)).expect("Failed to write to LEDs!");
let render_duration = Instant::now() - start;
let render_budget = Duration::from_millis(16);
if render_duration < render_budget {
let remaining_budget = render_budget - render_duration;
Timer::after(remaining_budget).await;
} else {
warn!("Render stall! Frame took {render_duration:?}");
}
// Increment the frame counter
frame += 1;
}
}